THE BERTRAM AND JUDITH KOHL BUILDING
OBERLIN’S NEW HOME FOR JAZZ STUDIES
DESIGN BY WESTLAKE REED LESKOSKY

DESIGN FACT SHEET

Project: The Bertram and Judith Kohl Building
 Oberlin College

Location: Oberlin, Ohio

Area: 37,000 square feet

Project Cost: $24 million

Owner: Oberlin College
 David H. Stull, Dean of the Conservatory of Music
 Michael Lynn, Associate Dean of the Conservatory of Music
 Nick Bobulsky, Project Manager

Architects/Engineers: Westlake Reed Leskosky, Cleveland, Ohio
 Paul E. Westlake, Jr., FAIA, Managing Principal, Lead Designer
 Jonathan C. Kurtz, AIA, Associate, Designer

General Contractor: Krill Construction, Cleveland, Ohio
Landscape Architect: GroundView, Somerville, Massachusetts
Acoustic Consultant: Kirkegaard Acoustic Design, Downers Grove, Illinois
Cost Estimator: PCS, Cleveland, Ohio
Civil Engineer: KS Associates, Elyria, Ohio

Architects’ Statements:
“Oberlin College has remarkable values. There is a conspiracy of excellence in its processes and people. Innovation is embedded in the DNA and culture of Oberlin. The college has an environmental soul and conscience that is exemplary, creating models and initiatives that will have meaningful impact locally and nationally.”
— Paul E. Westlake, FAIA, Managing Principal and a Lead Designer, Westlake Reed Leskosky

“The Bertram and Judith Kohl Building heightens Oberlin’s visionary approach to education. It will make the conservatory education visible and provide new opportunities for the daily life of students. The goal is that the students, faculty, and community have a physical place of exchange; that the building and landscape generate unforeseeable interactions and elevate everyday experience.”
— Jonathan Kurtz, Associate and Project Designer, Westlake Reed Leskosky
Design Brief:

The new Bertram and Judith Kohl Building serves as the innovative home for the Oberlin Conservatory of Music’s nationally recognized Department of Jazz Studies and its academic programs in music history and music theory. The Kohl Building features a world-class recording studio; flexible rehearsal and performance spaces; teaching studios and practice rooms; and an archive for the largest private jazz recording collection in America, rare musical instruments, and a rare collection of jazz photographs from the 1950s, among other holdings.

The new three-story building inhabits a former back lot shared by the conservatory and downtown retail merchants in the City of Oberlin. By re-establishing the founding axis of Oberlin, an entirely new precedent is created on campus. As a complement to the campus setting and gardens of the existing conservatory, this project focuses on making a street for public engagement, and a new building dense with activity.

Physical, visual, and intellectual access shapes the design. The component parts of the building all work in the service of providing these varied but complementary ways of entering the project. It is formally composed of three basic elements: an aluminum exterior which wraps and encloses the programmatic elements, and is cut and peeled away to create openings and bring daylight and views into the building; the third floor volume of ‘offices within a garden;’ and a vertical circulation system, both internal and external, that invites engagement with the building. The building’s ability to house and facilitate innovation will be its measure of success.

The Kohl Building is linked with the south wing of the Conservatory of Music building, which was designed in 1963 by noted American architect Minoru Yamasaki. Where Yamasaki’s building sacrifices the social realm of the corridors to the individual rooms, the Kohl Building makes a more equitable configuration where rooms and passages share the exterior. Formally, there are consistent strategies at play with both the new and the original complex, yet the Kohl Building reinterprets those strategies according to more contemporary techniques.

The Kohl Building is organized to strategically create places for “intellectual loitering” and the “assembly of creative ideas.” On the promenade level, the building defines exterior spaces and preserves, reinforces, and enhances an historic campus/public passageway, clarifying the axial relationship to the town’s Tappan Square. Above the outdoor walk, the third-story Sky Lounge provides an active social space – a shared realm and creative hub for the interaction of students, faculty, and staff.

Practice rooms and rehearsal spaces are concentrated on the lower two levels as a means of isolating spaces with more stringent acoustical requirements, while faculty offices occupy the upper floor. The vertical progression of spaces to the third story lounge and offices correlates to the movement from acoustic sensitivity to the visual openness of the landscape, culminating in the roof garden.

Anchoring the new facility, the recording studio and performance space fills a longstanding void for the conservatory, offering an adjustable acoustic environment and state-of-the-art digital equipment. Other flexible rehearsal spaces include three ensemble rooms for small ensembles. Specialized spaces include a library resources area, teaching studios, scholarly studios for music history and theory, practice rooms, a computer laboratory, music archive and exhibit areas, and lobby. Substantial storage areas include environmentally conditioned storage essential for musical instruments and the conservatory’s valuable library materials.

Expressing Oberlin College’s civic and social values, the building serves as a communal core, enlivened through the dialogue between interior social spaces of the building and the collective capacities of the exterior urban landscape.
Exterior Materials:
Exterior materials used for inherent elegance, neutral palette, and textural richness:
- Brazilian ipé hardwood siding harvested exclusively from naturally sustainable forests
- Glazed curtain wall system, comprised of acoustically rated glass and fritted patterns to reduce solar heat gain
- Custom stained aluminum rain screen system.

Interior Materials:
Interior materials continue the natural yet elegant character of exterior materials, carefully selected for durability, acoustic, and environmental properties:
- Concrete, exposed steel structure, CMU block walls in a 4 x 24” module, steel and wood doors
- Color palette derived from the inherent properties of the materials: white CMU block, black polished concrete floors
- Acoustic panels and draperies provide softness and accent of rich colors, set against uniform background.

LEED® and Sustainable Design:
Environmental stewardship is central to Oberlin College’s mission. The Kohl Building promotes green building practices and sustainable strategies and planning opportunities. Its design intention—to achieve the first Leadership in Energy and Environmental Design (LEED®) Gold rating for a facility exclusively dedicated to music—is remarkable given the engineering innovation required to attain such an appellation while meeting the exacting acoustical standards of a music building. The Kohl Building will serve as a pioneering model for sustainability and energy efficiency for music facilities of its type with stringent acoustical requirements.

The following LEED measures have been selected to reinforce and support the programmatic, functional, and operational requirements of the project and the overall environmental goals of the college:
1. Energy modeling to significantly improve the building envelope, and identifying the need for increased insulation and high performance glazing systems
2. Use of renewable energy sources such as geothermal to reduce reliance of the coal fired central plant
3. Building Management Systems to measure and account for energy consumption over time
4. Design strategies addressing daylighting and thermal comfort with individual controls and provisions for system controllability in multi-occupant spaces to suit group need and preferences
5. Upgrading of existing transformer vaults
6. Landscaped roof systems contributing to reduced storm water runoff
7. Low flow and sensor activated plumbing fixtures resulting in almost 50% (47.9%) reduction in potable water use below the code minimum baseline
8. Construction administration activities addressing indoor air quality management; construction waste management; use of low emitting sealants, paints, and other coatings; purchasing local/regional materials and materials with high recycled content; and hazardous material abatement at existing building connection.

Sustainable Landscape Features:
- Rain runoff from the roofs of new and existing buildings are collected and filtered on site
- Two third floor rooftop gardens provide additional thermal insulation and storm water mitigation as well as acoustic insulation to overhead noise; planted primarily with grasses, flowering perennials, bulbs, and woodland flowers
• Plants and durable materials to create a low maintenance landscape that minimizes energy and water resources needed to sustain the site.

Integrated Engineering Design:

• Mechanical Systems Design:
 o Ground-coupled heat pump system in conjunction with a dedicated outside air system (DOAS) and radiant heating/cooling for sensible space conditioning
 o Geothermal HVAC system consists of a ground-loop heat exchanger (GLHE), a ground loop water (glycol) piping and distribution system, geothermal water-to-water heat pumps, ground source heat pumps, and an energy recovery ventilator
 o Based on energy modeling, building energy efficiency measures will result in an energy cost reduction of 40% as compared to a LEED baseline building
 o In addition to the excellent energy efficiency, radiant heating/cooling offers superior acoustical performance, and excellent occupant comfort.

• Electrical Systems Design:
 o Incorporates advanced technologies and sustainable, energy efficient design principles
 o Systems include power distribution for future and current needs and new outdoor switchgear for conservatory, interior and exterior lighting, emergency egress lighting, fire alarm systems, grounding and bonding systems, security systems, and communication systems
 o Lighting control by local switching, occupancy sensors, and/or relay panels
 o Two new main lighting systems contribute to achieving LEED credits and energy savings: one lighting control system using digital electronic dimming ballasts to receive input from photocells, occupancy sensors, and dimmable light switches; another system with relay panel controlling lights through input from photocells, occupancy and daylight sensors, and a built-in time astronomical clock
 o Daylight harvesting adjusting the level of artificial lighting based on the adequacy of the available natural light
 o Lighting fixtures equipped with energy saving lamps and electronic ballasts
 o LED lighting used throughout the facility.

Awards and Recognitions:

• 2009 AIA Western Mountain Region, Honor Award for Unbuilt Work
• 2007 AIA Ohio Design Awards, Merit Award for Unbuilt Projects
• 2007 AIA Cleveland Design Awards, Merit Award for Unbuilt Work

###